﻿ GATE 2017 Physics Syllabus | GATE Syllabus 2017 | Graduate Aptitude Test in Engineering 2017 Physics Syllabus

Engineering Entrance Exam : GATE : GATE Physics Syllabus 2017

# GATE Physics Syllabus 2017

 GATE 2016 Online Mock Test / Free Trial -

GATE 2017 Physics ( PH ) Syllabus

Section 1 : Mathematical Physics

Linear vector space : basis, orthogonality and completeness; matrices; vector calculus; linear differential equations; elements of complex analysis : Cauchy Riemann conditions, Cauchy’s theorems, singularities, residue theorem and applications; Laplace transforms, Fourier analysis; elementary ideas about tensors : covariant and contravariant tensor, Levi – Civita and Christoffel symbols.

Section 2 : Classical Mechanics

D’Alembert’s principle, cyclic coordinates, variational principle, Lagrange’s equation of motion, central force and scattering problems, rigid body motion; small oscillations, Hamilton’s formalisms; Poisson bracket; special theory of relativity : Lorentz transformations, relativistic kinematics, mass ‐ energy equivalence.

Section 3 : Electromagnetic Theory

Solutions of electrostatic and magnetostatic problems including boundary value problems; dielectrics and conductors; Maxwell’s equations; scalar and vector potentials; Coulomb and Lorentz gauges; Electromagnetic waves and their reflection, refraction, interference, diffraction and polarization; Poynting vector, Poynting theorem, energy and momentum of electromagnetic waves; radiation from a moving charge.

Section 4 : Quantum Mechanics

Postulates of quantum mechanics; uncertainty principle; Schrodinger equation; one -, two – and three – dimensional potential problems; particle in a box, transmission through one dimensional potential barriers, harmonic oscillator, hydrogen atom; linear vectors and operators in Hilbert space; angular momentum and spin; addition of angular momenta; time independent perturbation theory; elementary scattering theory.

Section 5 : Thermodynamics and Statistical Physics

Laws of thermodynamics; macrostates and microstates; phase space; ensembles; partition function, free energy, calculation of thermodynamic quantities; classical and quantum statistics; degenerate Fermi gas; black body radiation and Planck’s distribution law; Bose ‐ Einstein condensation; first and second order phase transitions, phase equilibria, critical point.

Section 6 : Atomic and Molecular Physics

Spectra of one ‐ and many ‐ electron atoms; LS and jj coupling; hyperfine structure; Zeeman and Stark effects; electric dipole transitions and selection rules; rotational and vibrational spectra of diatomic molecules; electronic transition in diatomic molecules, Franck ‐ Condon principle; Raman effect; NMR, ESR, X – ray spectra; lasers : Einstein coefficients, population inversion, two and three level systems.

Section 7 : Solid State Physics & Electronics

Elements of crystallography; diffraction methods for structure determination; bonding in solids; lattice vibrations and thermal properties of solids; free electron theory; band theory of solids : nearly free electron and tight binding models; metals, semiconductors and insulators; conductivity, mobility and effective mass; optical, dielectric and magnetic properties of solids; elements of superconductivity : Type – I and Type II superconductors, Meissner effect, London equation.

Semiconductor devices : diodes, Bipolar Junction Transistors, Field Effect Transistors; operational amplifiers : negative feedback circuits, active filters and oscillators; regulated power supplies; basic digital logic circuits, sequential circuits, flip ‐ flops, counters, registers, A / D and D / A conversion.

Section 8 : Nuclear and Particle Physics

Nuclear radii and charge distributions, nuclear binding energy, Electric and magnetic moments; nuclear models, liquid drop model : semi ‐ empirical mass formula, Fermi gas model of nucleus, nuclear shell model; nuclear force and two nucleon problem; alpha decay, beta ‐ decay, electromagnetic transitions in nuclei; Rutherford scattering, nuclear reactions, conservation laws; fission and fusion; particle accelerators and detectors; elementary particles, photons, baryons, mesons and leptons; quark model.

GATE Related : GATE 2017 Physics Syllabus Detail, GATE 2017 Syllabus, GATE 2017 Entrance Exam Syllabus, GATE Physics Syllabus 2017, GATE Physics 2017 Syllabus Material, GATE 2017 Syllabus Download, GATE Syllabus Download for Physics 2017, GATE 2017 Syllabus Detail, GATE 2017 New Syllabus, GATE 2017 Physics Study Material, Graduate Aptitude Test in Engineering Syllabus for Physics 2017, GATE 2017 Syllabus Material, How to Download GATE Syllabus 2017, GATE 2017 Engineering Syllabus, GATE 2017 Exam Physics Syllabus, GATE 2017 Physics Question Papers, IIT 2017 GATE Syllabus, What is the Syllabus of GATE 2017, IIT GATE 2017 Physics Syllabus, GATE 2017 Entrance Test Syllabus, GATE Physics Syllabus Information 2017, GATE 2017 Syllabus of Physics, GATE 2017 Exam Syllabus, GATE 2017 Question Paper, GATE 2017 Question Paper Download,

Posted In engineering entrance exam : gate : Leave a response for gate physics syllabus 2017 by nirmala